Core Mathematics 4 Paper A

1. Express

$$
\frac{2 x}{2 x^{2}+3 x-5} \div \frac{x^{3}}{x^{2}-x}
$$

as a single fraction in its simplest form.
2. A curve has the equation

$$
2 x^{2}+x y-y^{2}+18=0
$$

Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.
3. The first four terms in the series expansion of $(1+a x)^{n}$ in ascending powers of x are

$$
1-4 x+24 x^{2}+k x^{3}
$$

where a, n and k are constants and $|a x|<1$.
(i) Find the values of a and n.
(ii) Show that $k=-160$.
4. Relative to a fixed origin, O, the points A and B have position vectors $\left(\begin{array}{c}1 \\ 5 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}6 \\ 3 \\ -6\end{array}\right)$ respectively.

Find, in exact, simplified form,
(i) the cosine of $\angle A O B$,
(ii) the area of triangle $O A B$,
(iii) the shortest distance from A to the line $O B$.
5. (i) Use the derivatives of $\sin x$ and $\cos x$ to prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \tag{4}
\end{equation*}
$$

The tangent to the curve $y=2 x \tan x$ at the point where $x=\frac{\pi}{4}$ meets the y-axis at the point P.
(ii) Find the y-coordinate of P in the form $k \pi^{2}$ where k is a rational constant.
6. (i) Find

$$
\begin{equation*}
\int \cot ^{2} 2 x \mathrm{~d} x . \tag{3}
\end{equation*}
$$

(ii) Use the substitution $u^{2}=x+1$ to evaluate

$$
\begin{equation*}
\int_{0}^{3} \frac{x^{2}}{\sqrt{x+1}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

7. During a chemical reaction, a compound is being made from two other substances.

At time t hours after the start of the reaction, $x \mathrm{~g}$ of the compound has been produced.
Assuming that $x=0$ initially, and that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2(x-6)(x-3)
$$

(i) show that it takes approximately 7 minutes to produce 2 g of the compound.
(ii) Explain why it is not possible to produce 3 g of the compound.
8.

The diagram shows the curve with parametric equations

$$
x=-1+4 \cos \theta, \quad y=2 \sqrt{2} \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

The point P on the curve has coordinates $(1, \sqrt{6})$.
(i) Find the value of θ at P.
(ii) Show that the normal to the curve at P passes through the origin.
(iii) Find a cartesian equation for the curve.

